Cycle Problems and Path Problems in Digraphs

School of Mathematics Sun Yat-sen University October 9, 2017

Zan-Bo Zhang

ıtline

Ol Definitions and Notations

02 Cycle and Path Problems in General

03 Degree Conditions and Extremal Digraphs

04 More Structures

05 Tournaments and Generalizations

01 Definitions and Notations

Basic Definitions 1

- **Graph** *G*: an ordered pair (*V*(*G*), *E*(*G*)), in which *V*(*G*) is the set of vertices and *E*(*G*) is the set of edges, which consists of unordered pairs of vertices.
- **Digraph** *D*: (*V*(*D*), *A*(*D*)), *V*(*D*) set of vertices, *A*(*D*) set of arcs, which consists of ordered pairs of vertices.

Basic Definition 2

- Path.
- Cycle.
- Length of a path or cycle: number of edges.
- Hamiltonian path (cycle): a path (cycle) that contains every vertex of the graph (digraph).
- **Traceable (Hamiltonian):** a graph (digraph) with a Hamiltonian path (cycle).

Definition & Notations 1

- Neighbor: two distinct vertices that are adjacent by an edge (arc) are neighbors.
- Neighborhood N(v) & Degree d(v): the set of neighbors of a vertex v, & d(v) = |N(v)|.
- In- & out-neighbor.
- In- & out-neighborhood. $N^-(v)$, $N^+(v)$.
- In-, out-degree & (total) degree. $d^{-}(v) = |N^{-}(v)|$, $d^{+}(v) = |N^{+}(v)|$, $d(v) = d^{-}(v) + d^{+}(v)$.

Definition & Notations 2

- $\delta(G)$, $\delta(D)$, $\delta^+(D)$ and $\delta^-(D)$: The minimum degree of the vertices in a graph G, minimum (total) degree in a digraph D, the minimum out-degree and in-degree of the vertices in D.
- $\delta^0(D)$: min{ $\delta^+(D), \delta^-(D)$ }, minimum semi-degree.
- $\sigma_k(G)$: minimum degree sum of all combinations of k independent vertices in a graph G. So $\delta(G) = \sigma_1(G)$.

Classical Results (Density)

• (Dirac, 1952)

If $\delta(G) \ge n/2$, then G is Hamiltonian.

• (Ore, 1960)

If $\sigma_2(G) \ge n$, then G is Hamiltonian.

Generalization – Weaker conditions

• (Fan, 1984)

If G is 2-connected and for every distinct vertices u and v with d(u, v) = 2, max $\{d(u), d(v)\} \ge n/2$, then G is Hamiltonian.

- **Connectivity:** the minimum number of vertices to be removed from *G* to make it disconnected.
- **Distance** d(u, v): the length of the shortest path between u and v in G.

Generalization – Various conditions 1

- $\sigma_k(G)$ for $k \geq 3$. $\sigma_k(G) \geq f(n)$.
- Neighborhood union. $|N(u) \cup N(v)| = d(u) + d(v) - |N(u) \cap N(v)|.$
- **Size:** number of edges. (example. *C*(*n*-1, 2)+1 for being Hamiltonian)

Generalization – Various conditions 2

- Degree sequence.
- Forbidden (induced) subgraph.
- Closures.
- Toughness.
- Binding number.

Generalization - More Structures 1

- Number of Hamiltonian cycles.
- Number of edge-disjoint Hamiltonian cycles.
 Decomposition & packing.
- Powers of a Hamiltonian cycle.
- Long cycles (circumference).
- Dominating cycle.
- Anti-directed paths and anti-directed cycles.
- Factors.

Generalization - More Structures 2

- Pancyclicity.
- Vertex- (edge-, arc-)pancyclicity.
- Hamiltonian-connectedness.
- Panconnectedness.
- Cycle extendability.
- Path extendability.

Degree Conditions and Extremal Digraphs

iii 📾 📀 😳

Jørgen Bang-Jensen Gregory Z. Gutin

SPRINGER MONOGRAPHS IN MATHEMATICS

Digraphs

Theory, Algorithms and Applications

Second Edition

• (Ghouila-Houri, 1960)

If $\delta(D) \ge n$, then D is Hamiltonian.

• (Corollary)

If $\delta^0(D) \ge n/2$, then D is Hamiltonian.

• (Woodall, 1972)

If $d^+(x) + d^-(y) \ge n$ for all pairs of vertices x and y such that there is no arc from x to y, then D is Hamiltonian.

• (Meyniel, 1973)

If D is strong and $d(x) + d(y) \ge 2n - 1$ for all pairs of nonadjacent vertices x and y in D, then D is Hamiltonian.

• **Strong:** for every pair *x*, *y* of distinct vertices there exist an (*x*, *y*)-path and a (*y*, *x*)-path.

• (Bang-Jensen et al. 1996)

If *D* is strong and $\min\{d^+(x) + d^-(y), d^-(x) + d^+(y)\} \ge n$ for every pair of dominating non-adjacent and every pair of dominated non-adjacent vertices $\{x, y\}$. Then *D* is

Hamiltonian.

• Dominating, dominated pair.

(Conjectured by Bang-Jensen et al. 1996)
 If D is strong and d(x) + d(y) ≥ 2n - 1 for every pair of dominating non-adjacent and every pair of dominated non-adjacent vertices {x, y}. Then D is Hamiltonian.

If *D* is strong and $d(x) + d(y) \ge 2n - 1$ for every pair of dominated non-adjacent vertices $\{x, y\}$. Then *D* is Hamiltonian.

Extremal Digraphs

• (Ghouila-Houri, 1960)

If $\delta(D) \ge n$, then D is Hamiltonian.

• (Corollary)

If $\delta^0(D) \ge n/2$, then D is Hamiltonian.

• (Nash-Williams, 1969)

Problem: describe all the extreme digraphs for Ghouila-Houri's theorem, i.e. the strong non-Hamiltonian digraphs of order n and minimum degree n - 1.

We do not say that the conclusion does not hold. We say that it holds with some exceptions!

- Professor Akira Saito

Extremal Digraphs for Ghouila-Houri's condition

• (Thomassen, 1981)

A structural result characterizing strong non-Hamiltonian digraphs of order n and minimum degree n - 1.

• (Darbinyan, 1986)

If D is a digraph of even order $n \ge 4$ such that $\delta(D) \ge n - 1$ and $\delta^0(D) \ge n/2 - 1$, then either D is Hamiltonian or Dbelongs to a non-empty finite family of exceptional digraphs.

Extremal Graphs for Woodall's condition

• (Woodall, 1972)

if $d^+(x) + d^-(y) \ge n$ for all pairs of vertices x and y such that there is no arc from x to y, then D is Hamiltonian.

• (Zhang, Zhang & Wen, SIDMA 2013)

if $d^+(x) + d^-(y) \ge n - 1$ for all pairs of vertices x and y such that there is no arc from x to y, then D is Hamiltonian, unless D belongs to one of four exceptional families of digraphs.

Techniques

• Multi-insertion (Bang-Jensen et al., 1996)

If a path P can be multi-inserted in to a path (cycle, resp.) Q, then there exists a path R with the same starting vertex and ending vertex of Q (a cycle R, resp.), and $V(R)=V(P) \cup V(Q)$.

Further Problems

- Give a complete characterization of the extremal digraphs of Ghoui-Houri's condition.
- Characterize the extremal digraphs of the conditions of Meyniel.
- Characterize the extremal digraphs of the conditions of Bang-Jensen et al.

04 More Structures in Digraphs

The "First Push"

• (Bondy, 1971)

"Meta-conjecture": Almost any nontrivial Hamiltonian condition also implies pancyclicity.

Cycles

- **Pancyclic:** there exist cycles of every length from 3 to *n* in a graph (digraph).
- Vertex- (edge-, arc-) pancyclic: every vertex, (edge, arc) is contained in cycles of every length from 3 to *n*.
- **Cycle extendable:** for every cycle *C*, there exists another cycle *C*', such that $V(C) \subset V(C')$ and |V(C')| = |V(C)| + 1.
- Fully cycle extendable.

Paths

- Hamiltonian-connected: between every two vertices there is a Hamiltonian path.
- Panconnected: between every two vertices there exist paths of every length from 3(2) to *n* 1.
- Path extendable: for every path *P*, there exists another path *P*' with the same starting and ending vertices, such that $V(P) \subset V(P')$ and |V(P')| = |V(P)| + 1.
- Fully path extendable.

Pancyclicity: Degree Conditions

• (Thomassen, 1977)

If $d(x) + d(y) \ge 2n$ whenever x and y are nonadjacent, then either D has cycles of all lengths 2, 3, ..., n or D belongs to some exception classes of digraphs.

• (Alon & Gutin, 1997)

If $\delta^0(D) \ge n/2 + 1$, then D is vertex-2-pancyclic. (every vertex is contained in cycles of every length from 2 to n)

• (Randerath et al., 2002)

If $\delta^0(D) \ge (n + 1)/2$, then D is vertex-pancyclic.

Pancyclicity: Size Conditions

 (Häggkvist & Thomassen, 1976)
 Every Hamiltonian digraph on *n* vertices and at least n(n + 1)/2 - 1 arcs is pancyclic.

Cycle Extendability

• Degree (Hendry, 1989)

If $\delta(D) \ge 3n/2 - 2$, then *D* is cycle extendable with some exceptions.

If $\delta^+(D)$, $\delta^-(D) \ge 2n/3 - 1$, then *D* is cycle extendable with some exceptions.

• Size (Hendry, 1989)

If *D* has at least $(n - 1)^2$ arcs, then *D* is cycle extendable. with some exceptions.

If *D* is strong and has more than $n^2 - 3n + 4$ arcs, then *D* is cycle extendable.

Path Extendability

- Implying relation (Zhang et al., SIDMA 2017) If *D* is path extendable, then *D* is cycle extendable.
- Degree (Zhang et al., SIDMA 2017)

If $\delta(D) \ge 3n/2 - 1$, then *D* is cycle extendable with some exceptions.

If $\delta^+(D)$, $\delta^-(D) \ge (2n-2)/3$, then *D* is cycle extendable with some exceptions.

• Size (Zhang et al., SIDMA 2017)

If *D* has at least $(n - 1)^2 + 1$ arcs, then *D* is path extendable. with some exceptions.

Techniques

- Counting the number of arcs between two parts of the digraph, or counting the degree sums.
- A contraction that builds up a corresponding between non-extendable paths and nonextendable cycles.

P is a non-extendable path in the original digraph, if and only if *C* is a non-extendable cycle in the resulted digraph.

Further Problems

- Degree sum conditions for cycle extendability in digraphs.
- Degree sum conditions for path extendability in digraphs.

Special Classes of Digraphs

- Path-mergeable digraphs.
- Locally in-semicomplete digraphs.
- Oriented graphs: digraphs without 2-cycle.

Tournaments & Generalizations

- **Tournament:** a digraph with EXACTLY one arc between every two distinct vertices.
- **Bipartite tournament (BT):** a 2-partite tournament.
- Multipartite tournament (MT, or k-partite tournament): a digraph whose vertices can be partitioned into k parts, with no arc between vertices in the same part, but exactly one arc between every two vertices in different parts.
- Semicomplete multipartite digraphs.

Tournaments 1

- (Rédei, "Ein kombinatorischer Satz", 1934) Every tournament is traceable.
- (Camion, 1959)

A strong tournament is Hamiltonian.

• (Moon, 1968)

Every strong tournament is vertex-pancyclic.

• (Moon, 1969 & Hendry, 1989)

A strong tournament is cycle extendable, unless it belongs to one exceptional class of tournaments.

Tournaments 2

• (Hendry, 1989)

A regular tournament is cycle extendable, unless it belongs to one exceptional class of tournaments.

• (Zhang et al., SIDMA 2017)

Tournaments are not generally path extendable.

Neither are strong and regular tournaments.

In a regular tournament every path of length at least 2 is extendable, unless it belongs to two exceptional class of tournaments, or isomorphic to a regular tournament on 7 vertices.

The three regular tournaments on 7 vertices, among which only (b) is path extendable

Techniques

• An impossible configure.

Techniques

• Dominating, dominated and hybrid vertices.

Further Problems

- Generalize some existing conditions for panconnected in tournaments to those for path extendability in tournaments.
- Strong cycle and path properties, such as pancyclicity, cycle extendability, panconnectedness and path extendability of multipartite tournaments.

Thanks for your attention!