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01 Definitions and 
Notations



Basic Definitions 1

• Graph G: an ordered pair (V(G), E(G)), in which V(G) is 
the set of vertices and E(G) is the set of edges, which 
consists of unordered pairs of vertices.

• Digraph D: (V(D), A(D)), V(D) set of vertices, A(D) set of 
arcs, which consists of ordered pairs of vertices.



Basic Definition 2

• Path.
• Cycle.
• Length of a path or cycle: number of edges.

• Hamiltonian path (cycle): a path (cycle) that 
contains every vertex of the graph (digraph).

• Traceable (Hamiltonian): a graph (digraph) with a 
Hamiltonian path (cycle).



Definition & Notations 1

• Neighbor: two distinct vertices that are adjacent by an 
edge (arc) are neighbors.

• Neighborhood N(v) & Degree d(v): the set of 
neighbors of a vertex v, & d(v) = |N(v)|.

• In- & out-neighbor.
• In- & out-neighborhood. N-(v), N+(v).

• In-, out-degree & (total) degree. d-(v) = |N-(v)|,
d+(v) = |N+(v)|, d(v) = d-(v) + d+(v).



Definition & Notations 2

• δ(G), δ(D), δ+(D) and δ-(D): The minimum degree 
of the vertices in a graph G, minimum (total) degree in a 
digraph D, the minimum out-degree and in-degree of the 
vertices in D. 

• δ0(D): min{δ+(D), δ-(D)}, minimum semi-degree.

• σk(G): minimum degree sum of all combinations of k
independent vertices in a graph G. So δ(G) = σ1(G).



02 Cycle and Path 
Problems in 
General



Classical Results (Density)

• (Dirac, 1952)
If δ(G) ≥ n/2, then G is Hamiltonian.

• (Ore, 1960)
If σ2(G) ≥ n, then G is Hamiltonian.



Generalization – Weaker 
conditions
• (Fan, 1984)

If G is 2-connected and for every distinct vertices u and v
with d(u, v) = 2, max{d(u), d(v)} ≥ n/2, then G is 
Hamiltonian.

• Connectivity: the minimum number of vertices to be 
removed from G to make it disconnected.

• Distance d(u, v): the length of the shortest path 
between u and v in G.



Generalization – Various 
conditions 1
• σk(G) for k ≥ 3. σk(G) ≥ f(n).

• Neighborhood union.             
|N(u)∪N(v)|=d(u)+d(v)-|N(u)∩N(v)|.

• Size: number of edges. (example. C(n-1, 2)+1 for being 
Hamiltonian)



Generalization – Various 
conditions 2
• Degree sequence.
• Forbidden (induced) subgraph.
• Closures.
• Toughness.
• Binding number.



Generalization - More Structures 1

• Number of Hamiltonian cycles.
• Number of edge-disjoint Hamiltonian cycles.

– Decomposition & packing.

• Powers of a Hamiltonian cycle.
• Long cycles (circumference).
• Dominating cycle.
• Anti-directed paths and anti-directed cycles.
• Factors.



Generalization - More Structures 2

• Pancyclicity.
• Vertex- (edge-, arc-)pancyclicity.
• Hamiltonian-connectedness.
• Panconnectedness.
• Cycle extendability.
• Path extendability.



03 Degree Conditions 
and Extremal
Digraphs





Degree Conditions 1

• (Ghouila-Houri, 1960)
If δ(D) ≥ n, then D is Hamiltonian.

• (Corollary)
If δ0(D) ≥ n/2, then D is Hamiltonian.

• (Woodall, 1972)
If d+(x) + d-(y) ≥ n for all pairs of vertices x and y such that 
there is no arc from x to y, then D is Hamiltonian. 



Degree Conditions 2

• (Meyniel, 1973)
If D is strong and d(x) + d(y) ≥ 2n − 1 for all pairs of non-
adjacent vertices x and y in D, then D is Hamiltonian.

• Strong: for every pair x, y of distinct vertices  there exist 
an (x, y)-path and a (y, x)-path.



Degree Conditions 3

• (Bang-Jensen et al. 1996)
If D is strong and min{d+(x) + d-(y), d-(x) + d+(y)} ≥ n
for every pair of dominating non-adjacent and every pair of 
dominated non-adjacent vertices {x, y}. Then D is 
Hamiltonian.

• Dominating, dominated pair.

x y yx



Degree Conditions 4

• (Conjectured by Bang-Jensen et al. 1996)
If D is strong and d(x) + d(y) ≥ 2n - 1 for every pair of 
dominating non-adjacent and every pair of dominated non-
adjacent vertices {x, y}. Then D is Hamiltonian.

If D is strong and d(x) + d(y) ≥ 2n - 1 for every pair of 
dominated non-adjacent vertices {x, y}. Then D is 
Hamiltonian.



Extremal Digraphs

• (Ghouila-Houri, 1960)
If δ(D) ≥ n, then D is Hamiltonian.

• (Corollary)
If δ0(D) ≥ n/2, then D is Hamiltonian.

• (Nash-Williams, 1969)
Problem: describe all the extreme digraphs for Ghouila-
Houri's theorem, i.e. the strong non-Hamiltonian digraphs 
of order n and minimum degree n - 1.



─ Professor Akira Saito

We do not say that the conclusion does not 
hold. We say that it holds with some 
exceptions!



Extremal Digraphs for Ghouila-
Houri’s condition
• (Thomassen, 1981)

A structural result characterizing strong non-Hamiltonian 
digraphs of order n and minimum degree n - 1.

• (Darbinyan, 1986)
If D is a digraph of even order n ≥ 4 such that δ(D) ≥ n - 1
and δ0(D) ≥ n/2 - 1, then either D is Hamiltonian or D
belongs to a non-empty finite family of exceptional 
digraphs. 



Extremal Graphs for Woodall’s 
condition
• (Woodall, 1972)

if d+(x) + d-(y) ≥ n for all pairs of vertices x and y such that 
there is no arc from x to y, then D is Hamiltonian.

• (Zhang, Zhang & Wen, SIDMA 2013)
if d+(x) + d-(y) ≥ n - 1 for all pairs of vertices x and y such 
that there is no arc from x to y, then D is Hamiltonian, 
unless D belongs to one of four exceptional families of 
digraphs.



Techniques

• Multi-insertion (Bang-Jensen et al., 1996)
If a path P can be multi-inserted in to a path (cycle, resp.) Q, 
then there exists a path R with the same starting vertex and 
ending vertex of Q (a cycle R, resp.), and V(R)=V(P)∪V(Q).

P

Q



Further Problems

• Give a complete characterization of the 
extremal digraphs of Ghoui-Houri's condition.

• Characterize the extremal digraphs of the 
conditions of Meyniel.

• Characterize the extremal digraphs of the 
conditions of Bang-Jensen et al.



04 More Structures in 
Digraphs



The "First Push"

• (Bondy, 1971) 
"Meta-conjecture": Almost any nontrivial 
Hamiltonian condition also implies pancyclicity.



Cycles

• Pancyclic: there exist cycles of every length from 3 to n in 
a graph (digraph).

• Vertex- (edge-, arc-) pancyclic: every vertex, (edge, 
arc) is contained in cycles of every length from 3 to n.

• Cycle extendable: for every cycle C, there exists 
another cycle C', such that V(C)⊂V(C') and |V(C')|=|V(C)|+1.

• Fully cycle extendable.



Paths

• Hamiltonian-connected: between every two vertices 
there is a Hamiltonian path.

• Panconnected: between every two vertices there exist 
paths of every length from 3(2) to n - 1.

• Path extendable: for every path P, there exists another 
path P' with the same starting and ending vertices, such that 
V(P) ⊂ V(P') and |V(P')| = |V(P)| + 1.

• Fully path extendable.



Traceable

Hamiltonian

Pancyclic

Vertex-
Pancyclic

Panconnected 
(2≤k≤n-1)*

Arc-
Pancyclic

Hamiltonian
-connected

Arc-
Antipancyclic

Fully cycle 
extendable

Fully path extendable
(2≤k≤n-1)

*: C. Thomassen originally 
defined panconnecteness with 
a requirement of path of length 
from 3 to n-1. But to imply 
various pancyclicities we must 
have path from 2 to n-1 here.

Cycle 
extendable

Path 
extendable



Pancyclicity:  Degree Conditions

• (Thomassen, 1977)
If d(x) + d(y) ≥ 2n whenever x and y are nonadjacent, then 
either D has cycles of all lengths 2, 3, ... ,n or D belongs to 
some exception classes of digraphs.

• (Alon & Gutin, 1997)
If δ0(D) ≥ n/2 + 1, then D is vertex-2-pancyclic. (every vertex 
is contained in cycles of every length from 2 to n)

• (Randerath et al., 2002)
If δ0(D) ≥ (n + 1)/2, then D is vertex-pancyclic.



Pancyclicity: Size Conditions

• (Häggkvist & Thomassen, 1976)
Every Hamiltonian digraph on n vertices and at least
n(n + 1)/2 − 1 arcs is pancyclic.



Cycle Extendability

• Degree (Hendry, 1989)
If δ(D) ≥ 3n/2 - 2, then D is cycle extendable with some 
exceptions.
If δ+(D), δ-(D) ≥ 2n/3 - 1, then D is cycle extendable with 
some exceptions.

• Size (Hendry, 1989)
If  D has at least (n - 1)2 arcs, then D is cycle extendable. 
with some exceptions.
If  D is strong and has more than n2 - 3n + 4 arcs, then D is 
cycle extendable.



Path Extendability

• Implying relation (Zhang et al., SIDMA 2017)
If D is path extendable, then D is cycle extendable.

• Degree (Zhang et al., SIDMA 2017)
If δ(D) ≥ 3n/2 - 1, then D is cycle extendable with some 
exceptions.
If δ+(D), δ-(D) ≥ (2n-2)/3, then D is cycle extendable with 
some exceptions.

• Size (Zhang et al., SIDMA 2017)
If  D has at least (n - 1)2+1 arcs, then D is path extendable. 
with some exceptions.



Techniques

• Counting the number of arcs between two 
parts of the digraph, or counting the degree 
sums.

• A contraction that builds up a corresponding 
between non-extendable paths and non-
extendable cycles.



P

v0 v1 vp-2 vp-1

C

v1 vp-2

v0v'

P is a non-extendable path in the original digraph, if and 
only if C is a non-extendable cycle in the resulted digraph.



Further Problems

• Degree sum conditions for cycle extendability
in digraphs.

• Degree sum conditions for path extendability
in digraphs.



05 Tournaments and 
Generalizations



Special Classes of Digraphs

• Path-mergeable digraphs.
• Locally in-semicomplete digraphs.
• Oriented graphs: digraphs without 2-cycle.



Tournaments & Generalizations

• Tournament: a digraph with EXACTLY one arc between 
every two distinct vertices.

• Bipartite tournament (BT): a 2-partite tournament.

• Multipartite tournament (MT, or k-partite 
tournament): a digraph whose vertices can be 
partitioned into k parts, with no arc between vertices in the 
same part, but exactly one arc between every two vertices in 
different parts.

• Semicomplete multipartite digraphs. 



Tournaments 1

• (Rédei, "Ein kombinatorischer Satz", 1934)
Every tournament is traceable.

• (Camion, 1959)
A strong tournament is Hamiltonian.

• (Moon, 1968)
Every strong tournament is vertex-pancyclic.

• (Moon, 1969 & Hendry, 1989)
A strong tournament is cycle extendable, unless it belongs 
to one exceptional class of tournaments.



Tournaments 2

• (Hendry, 1989)
A regular tournament is cycle extendable, unless it belongs 
to one exceptional class of tournaments.

• (Zhang et al., SIDMA 2017)
Tournaments are not generally path extendable.
Neither are strong and regular tournaments.
In a regular tournament every path of length at least 2 is 
extendable, unless it belongs to two exceptional class of 
tournaments, or isomorphic to a regular tournament on 7
vertices.



The three regular tournaments 
on 7 vertices, among which 
only (b) is path extendable



Techniques

• An impossible configure.

P



Techniques

• Dominating, dominated and hybrid vertices.

P

P

P



Further Problems

• Generalize some existing conditions for pan-
connected in tournaments to those for path 
extendability in tournaments.

• Strong cycle and path properties, such as 
pancyclicity, cycle extendability, 
panconnectedness and path extendability of 
multipartite tournaments.
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